Uniri projekt 2024./ UNIRI project 2024

Kombinatorički dizajni i s njima povezane strukture / Combinatorial designs and related structures

Fakultet za matematiku, Sveučilište u Rijeci / Faculty of Mathematics, University of Rijeka

 

Fakultet za matematiku

Sveučilište u Rijeci

 

 

U teoriji kombinatoričkih dizajna proučavaju se kolekcije podskupova konačnih skupova koje imaju neka posebna svojstva, takozvana svojstva balansiranosti. Najpoznatije strukture među kombinatoričkim dizajnima su blokovni dizajni, poznati također pod skraćenicom BIBD (balanced incomplete block designs). U sklopu projekta bavit ćemo se konstrukcijom kombinatoričkih dizajna i pručavanjem njihovih svojstava. Konstrukcija dizajna obuhvaćat će konstrukcije iz konačnih grupa i kodova, a također i konstrukcije q-analogona dizajna iz vektorskih prostora. Također, konstruirani kombinatorički dizajni će se analizirati, s naglaskom na proučavanje njihovih veza sa srodnim strukturama kao što su grupe, linearni kodovi, mrežni kodovi, grafovi i njihovi q-analogoni. Takva istraživanja, uz doprinos teoriji dizajna, doprinose i boljem razumijevanju konačnih grupa, kodova, grafova i njihovih q-analogona. Posebno će se posvetiti pažnja jako regularnim grafovima, koji su blisko povezani s blokovnim dizajnima, i distancijsko regularnim grafovima kao poopćenju jako regularnih grafova. Također će se proučavati Hadamardove matrice, koje su usko vezane za kombinatoričke dizajne. Hadamardove matrice imaju brojne primjene, npr. u fizici, teoriji kodiranja, obradi signala i spektrometriji, što daje dodatnu važnost njihovom proučavanju.

In the theory of combinatorial designs, collections of subsets of finite sets that have some special properties, the so-called balanced properties, are studied. The most famous structures among combinatorial designs are block designs, also known as BIBDs (balanced incomplete block designs). In scope of the project, we will deal with the construction of combinatorial designs and investigating their properties. Methods of construction will include constructions from finite groups and codes, and also constructions of q-analogs of designs from vector spaces. Further, constructed combinatorial designs will be analyzed, with an emphasis on studying their connections with related structures such as groups, linear codes, network codes, graphs and their q-analogs. Such research, in addition to contributing to design theory, also contributes to a better understanding of finite groups, codes, graphs and their q-analogs. Special attention will be paid to strongly regular graphs, which are closely related to block designs, and to distance-regular graphs as a generalization of strongly regular graphs. Hadamard matrices, which are closely related to combinatorial designs, will also be studied. Hadamard matrices have numerous applications, for example in physics, coding theory, signal processing and spectrometry, which gives additional importance to their study.

 

Voditelj / Principal investigator:

prof. dr. sc. Dean Crnković (Fakultet za matematiku, Sveučilište u Rijeci / Faculty of Mathematics, University of Rijeka ), e-mail: deanc@math.uniri.hr

Istraživački tim / Research team:

doc. dr. sc. Doris Dumičić Danilović (Fakultet za matematiku, Sveučilište u Rijeci / Faculty of Mathematics, University of Rijeka)

dr. sc. Ana Grbac (Fakultet za matematiku, Sveučilište u Rijeci / Faculty of Mathematics, University of Rijeka)

Daniel Šanko (Fakultet za matematiku, Sveučilište u Rijeci / Faculty of Mathematics, University of Rijeka)

 

Objavljeni radovi / Papers:

  • D. Dumičić Danilović, A. Švob, On Hadamard 2-(51, 25, 12) and 2-(59, 29, 14) designs, AIMS Math. 9 (2024), 23047-23059. doi: 10.3934/math.20241120

  • A. E. Brouwer, D. Crnković, A. Švob, A construction of directed strongly regular graphs with parameters (63,11,8,1,2), Discrete Math. 347 (2024), 114146, 3 pages.

  • M. Braun, D. Crnković, M. De Boeck, V. Mikulić Crnković, A. Švob, q-Analogs of strongly regular graphs, Linear Algebra Appl. 693 (2024), 362-373.

  • D. Crnković, A. Švob, Self-Orthogonal Codes from Deza Graphs, Normally Regular Digraphs and Deza Digraphs, Graphs Combin. (2024), 40:35, 12 pages.

  • D. Crnković, S. Rukavina, A. Švob, Self-orthogonal codes from equitable partitions of distance-regular graphs, Adv. Math. Commun. 18 (2024), 651-660.

 

Pozvana predavanja / Invited talks:  

  • D. Crnković, q-ary strongly regular graphs, Combinatorics 2024, Riva Marina Resort, Carovigno (Br), Italy, 3-7 June 2024.

  • D. Crnković, Constructing self-orthogonal and LCD subspace codes, Workshop Combinatorial Structures and their Applications, Riva Marina Resort, Carovigno (Br), Italy, 3-7 June 2024.

  • D. Crnković, Constructions of LCD subspace codes, Combinatorial Constructions Conference (CCC), Dubrovnik, Croatia, April 7-13, 2024.

 

Izlaganja na konferencijama / Talks:  

  • D. Crnković, Constructing doubly even self-dual codes from Hadamard matrices, Combinatorial Designs and Codes (CODESCO24), Seville, Spain, July 8-12, 2024.

  • D. Dumičić Danilović, On Steiner systems S(2,6,91), 8th Croatian Mathematical Congress, Osijek, Croatia, July 2-5, 2024.

  • D. Dumičić Danilović, On Steiner systems S(2,6,91), Combinatorial Constructions Conference (CCC), Dubrovnik, Croatia, April 7-13, 2024.


Članovi istraživačkog tima izlažu o svojim rezultatima i u okviru Seminara za konačnu matematiku.

 

Fakultet za matematiku Sveučilište u Rijeci